Research & Technology Forum: Panel Discussion
Experts Agree on Aerosol Transmission of COVID-19: How Can Schools Manage Indoor Air to Stop the Spread?
Tuesday, July 21st, 11:00 - noon EST

A new school year is beginning soon. Understanding the ventilation and air quality of indoor spaces is critically important.
With strong recommendations from 239 scientists from 32 countries, including faculty from Syracuse University, the World Health Organization is now acknowledging the evidence that COVID-19 can be transmitted through aerosol droplets. Viral particles become airborne when people sneeze, cough, sing, talk or breath.

As students return to campuses and classrooms, how can faculty, teachers and building managers optimize ventilation and filtration strategies to help keep students and faculty healthy? From improved ventilation modifications, to HVAC and air filtration, to physical modification of spaces, we will be discussing the current knowledge of how to mitigate the spread of the coronavirus in indoor environments.
Confirmed speakers include:
Cliff I. Davidson , Thomas C. and Colleen L. Wilmot Professor of Engineering, Environmental Engineering Program Director of Civil & Environmental Engineering, Syracuse University


Cliff Davidson is the Thomas and Colleen Wilmot Professor of Engineering in the Department of Civil and Environmental Engineering at Syracuse University in Syracuse, NY. He also serves as Director of Environmental Engineering Programs, and Director of the Center for Sustainable Engineering. He received his B.S. in Electrical Engineering from Carnegie Mellon University, and his M.S. and Ph.D. degrees in Environmental Engineering Science from California Institute of Technology. Following his PhD, he joined the Carnegie Mellon faculty where he stayed for 33 years in the Department of Civil Engineering (currently Civil and Environmental Engineering) and the Department of Engineering and Public Policy. He moved to Syracuse University in 2010.

Davidson’s research background is in the area of air quality, especially aerosol interaction with surfaces, including surfaces of fibers in a face mask or filter. He has also worked on environmental sustainability in other areas, such as the design of sustainable cities, the effectiveness of green roofs in reducing urban stormwater runoff, educational innovations for teaching sustainable engineering, and identifying the preferences of individuals and organizations for strategies to adapt to climate change. He has published over 130 papers in refereed journals and another 100 papers in peer-reviewed conference proceedings and book chapters. He has served on the editorial boards of four scientific journals, and is a Fellow in three national organizations. He has recently been chosen as the 2021-2022 Distinguished Lecturer by the Association of Environmental Engineering and Science Professors.
Jianshun "Jensen" Zhang, Ph.D., Professor, Department of Mechanical and Aerospace Engineering at Syracuse University and Visiting Professor, School of Architecture and Urban Planning at Nanjing University, China


Dr. Jianshun “Jensen” Zhang is Professor and Director of Building Energy and Environmental Systems Laboratory, Department of Mechanical and Aerospace Engineering at Syracuse University (SU), New York, USA, and a Visiting Professor and Chief Researcher of the School of Architecture and Urban Planning at Nanjing University, China. He received his Ph.D. from University of Illinois at Urbana-Champaign and worked at National Research Council of Canada for 8 years before he joined SU.

Dr. Zhang is a co-leader of the SU-wide research cluster in Energy and Environment that promotes and coordinates multi-disciplinary research on the campus. He is an expert in room air and contaminant distribution, material emissions, air purification, building enclosure performance, and combined heat, air, moisture and pollutant simulations (CHAMPS) for integrative design and intelligent controls of buildings. He has authored/co-authored over 200 technical papers and 3 American national standards. He is Associate Editor of Journal of Science and Technology for the Built Environment (STBE, formerly ASHRAE HVAC&R Research Journal) and The International Journal of Ventilation, and serves as a Member of the Editorial Boards of Building Simulations—an international Journal, International Journal of High-Rise Buildings, and the International Journal of Architectural Frontier Research. He is Fellow of ISIAQ and ASHRAE, and current Chairman of the International Association of Building Physics. 
Moderated by:
Eric A. Schiff , Interim Executive Director, SyracuseCoE and Professor of Physics, Syracuse University


Dr. Schiff has a long history of leading complex research projects that bring together academics, industry scientists and other partners to discover solutions to society’s energy-related problems. He has been a professor of physics at Syracuse University since 1981, leading interdisciplinary research groups and collaborating with laboratories from other universities and private organizations throughout the world. He has been a principal investigator for externally funded research projects from government agencies (Department of Energy, National Science Foundation and the Empire State Development Corp.) and corporations (United Solar Ovonic LLC, Boeing Inc., First Solar Inc., and SRC Inc.). During his time at Syracuse, he has spent half-year sabbaticals at Xerox Palo Alto Research Center and at Innovalight, Inc., a startup company. From 2014-1017, he served concurrently as a program director at ARPA-E, an agency of the Department of Energy. There he initiated the SHIELD research program of a dozen research projects for development of inexpensive efficiency retrofits for legacy single pane windows. He also supervised a portfolio of additional projects on solar energy conversion and other energy technologies.

Schiff’s own research accomplishments include development of low-mobility solar cell device physics for thin film solar cells such as perovskites, amorphous silicon, and cadmium telluride. His fundamental physics contributions include work on electronic transport and defects in semiconductors as well as on plasmonics. He is co-author of more than 100 refereed research publications with more than 4,000 citations and he is co-inventor on three U.S. patents. He is a Fellow of the American Physical Society.