Today 50% of the males and 30% of the females will get cancer. Protect yourself and your family and greatly decrease the odds.

 

Please skip ahead right now and take a minute to scan the 8 highlighted study results below and notice how extensive all of the studies are. Then take a look at the remaining studies in each case like the highlighted ones noticing subject and conclusion. Then come back to read the rest of this if you want.

 

Keep in mind this is "correct" water is as found in the special places in the world where water is noted for its healing properties. Its unlike any other water we are drinking today and drinking this form of correct water (pH 9.5 and -500mV to -800mV ORP) is the most important thing to do first in human health. It is available for you and your families health. Please disregard any negative information on this water and the company and contact me as needed for clarification.

 

As a professional engineer with strong science and health background, I have studied water scientifically for 10 years and it took me 5 years to even try Kangen water because of all the negative press from (ignorant-as I once was) doctors and others and other "competing" water suppliers. Non of them have what Kangen water has. None of them have a 40 years hospital approved and use record. None of them have the highest medical grade materials, quality, power, and unit actual statistical life span of 15 to 20 years avg., even 30 years. 

 

This is why the units a more expensive but well worth the investment. This is yours and your families health. You do not want to settle for less in this case.  

 

You are 70%-80% water and most likely the water you are drinking is not hydrating properly and is an oxidative solution. Kangen water is 80% absorbed into the cellular, detoxifies, oxygenates and protects with ant oxidant like nothing else can. We are also looking for wellness partners to simply give this water to close family, friends and others. It is a matter of great importance in human health especially in this country.               

Here are 17 study abstracts showing remarkable results with electrolyzed reduced water (ERW); aka, reduced water (RD); aka, "negative water;" aka, alkaline ionized water; aka, Kangen water , and electrolyzed oxidizing (EO) water; aka, Kangen strong acidic water These are very complex and I don't expect anyone to completely read or understand unless you are a research scientist or doctor.
 
I have highlighted and underline the main subject (cancer, diabetes, liver, kidney, dialysis, etc), and highlighted the conclusion in each of 8 studies, so please take a few minutes and just scroll down and scan these lines and you will get the idea of how incredibly important drinking this water is. 

At this point I would be afraid to not drink Kangen water. Enjoy and contact me anytime with questions or purchase/finance options. You can own the world famous SD-501 (pictured), approved as a medical device with numerous certifications and awards, and proven around the world for many years for as little as 0 down and $44/month for the first 12 months. This is one debt you want and it can be a great tax write off (see your tax man).
 
  These units are the only ones approved in over 100 Japanese hospitals for over 40 years and have a 15 to 20 year average life (this is actual statistical data, not expected life as other companies purport that have not even been in business this long). My experience after owning several different other types is they give great promises but don't perform. The water is not as effective, they can't provide full range of 2.5 pH strong acidic to 11.5 pH strong alkaline, the 9.5 pH drinking water is not powerful enough, and the units don't last.
 
Ask yourself this question: "would a company be around after 40 years and growing more than ever if the products and company weren't the best?" Consider this when you hear any negative reports. They simply are not true.
 
Here are the studies:   

1. Cancer. Electrolyzed Reduced Water Supplemented with Platinum Nanoparticles Suppresses Promotion of Two-stage Cell Transformation.
  • 1Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, 812-8581, Higashi-ku, Fukuoka, Japan.
Abstract
In the two-stage cell transformation theory, cancer cells first receive initiation, which is mainly caused by DNA damage, and then promotion, which enhances transformation. Murine Balb/c 3T3 cells are widely used for transformation experiments because they lose contact inhibition ability when transformed. Electrolyzed reduced water (ERW), which is produced near a cathode during electrolysis of water, is an alkaline drinking water that is beneficial to health. ERW contains a high concentration of dissolved hydrogen and scavenge reactive oxygen species (ROS), along with a small amount of platinum (Pt) nanoparticles (Pt nps) derived from Pt-coated titanium electrodes. Pt nps stably disperse in aqueous solution for a long time, and convert hydrogen molecules to active hydrogen (atomic hydrogen) that can scavenge ROS. Therefore, ERW supplemented with synthesized Pt nps is a model strong reduced water. This is the first report that ERW supplemented with synthesized Pt nps strongly prevents transformation of Balb/c 3T3 cells. ERW was prepared by electrolysis of 0.002 M NaOH solution using a batch-type electrolysis device. Balb/c 3T3 cells were treated with 3-methyl cholanthrene (MCA) as an initiation substance, followed by treatment with phorbol-12-myristate-13-acetate (PMA) as a promotion substance. MCA/PMA-induced formation of a transformation focus was strongly suppressed by ERW supplemented with Pt nps but not by ERW or Pt nps individually. ERW supplemented with Pt nps suppressed transformation at the promoter stage, not at initiation, suggesting that ERW supplemented with Pt nps suppressed the PMA-induced augmentation of intracellular ROS. ERW supplemented with Pt nps is a potential new antioxidant against carcinogenesis .
 
2. Diabetes. Protective mechanism of reduced water against alloxan-induced pancreatic beta-cell damage: Scavenging effect against reactive oxygen species.
  • 1Department of Genetic Resources Technology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Japan.
Abstract
Reactive oxygen species (ROS) cause irreversible damage to biological macromolecules, resulting in many diseases. Reduced water (RW) such as hydrogen-rich electrolyzed reduced water and natural reduced waters like Hita Tenryosui water in Japan and Nordenau water in Germany that are known to improve various diseases, could protect a hamster pancreatic beta cell line, HIT-T15 from alloxan-induced cell damage. Alloxan, a diabetogenic compound, is used to induce type 1 diabetes mellitus in animals. Its diabetogenic effect is exerted via the production of ROS. Alloxan-treated HIT-T15 cells exhibited lowered viability, increased intracellular ROS levels, elevated cytosolic free Ca(2+) concentration, DNA fragmentation, decreased intracellular ATP levels and lowering of glucose-stimulated release of insulin. RW completely prevented the generation of alloxan-induced ROS, increase of cytosolic Ca(2+) concentration, decrease of intracellular ATP level, and lowering of glucose-stimulated insulin release, and strongly blocked DNA fragmentation, partially suppressing the lowering of viability of alloxan-treated cells . Intracellular ATP levels and glucose-stimulated insulin secretion were increased by RW to 2-3.5 times and 2-4 times, respectively, suggesting that RW enhances the glucose-sensitivity and glucose response of beta-cells. The protective activity of RW was stable at 4 degrees C for over a month, but was lost by autoclaving. These results suggest that RW protects pancreatic beta-cells from alloxan-induced cell damage by preventing alloxan-derived ROS generation. RW may be useful in preventing alloxan-induced type 1-diabetes mellitus.
 
3. Liver. Electrolyzed-reduced water inhibits acute ethanol-induced hangovers in Sprague-Dawley rats.
  • 1Department of Environmental Medical Biology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Republic of Korea.
Abstract
Ethanol consumption disturbs the balance between the pro- and anti-oxidant systems of the organism, leading to oxidative stress. Electrolyzed-reduced water (ERW) is widely used by people in East Asia for drinking purposes because of its therapeutic properties including scavenging effect of reactive oxygen species. This study was performed to investigate the effect of ERW on acute ethanol-induced hangovers in Sprague-Dawley rats. Alcohol concentration in serum of ERW-treated rats showed significant difference at 1 h, 3 h and 5 h respectively as compared with the rats treated with distilled water. Both alcohol dehydrogenase type 1 and acetaldehyde dehydrogenase related with oxidation of alcohol were significantly increased in liver tissue while the level of aspartate aminotransferase and alanine aminotransferase in serum was markedly decreased 24 h after pre-oral administration of ERW. Moreover, oral administration of ERW significantly activated non-ezymatic (glutathione) and enzymatic (glutathione peroxidase, glutathione-S-transferase, Cu/Zn-superoxide dismutase and catalase) antioxidants in liver tissues compared with the control group. These results suggest that drinking ERW has an effect of alcohol detoxification by antioxidant mechanism and has potentiality for relief of ethanol-induced hangover symptoms.
 
4. Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage .
 
  • 1Institute of Cellular Regulation Technology, Graduate School of Genetic Resources Technology, Kyushu University, Fukuoka, Japan. [email protected]
Abstract
Active oxygen species or free radicals are considered to cause extensive oxidative damage to biological macromolecules, which brings about a variety of diseases as well as aging. The ideal scavenger for active oxygen should be 'active hydrogen'. 'Active hydrogen' can be produced in reduced water near the cathode during electrolysis of water. Reduced water exhibits high pH, low dissolved oxygen (DO), extremely high dissolved molecular hydrogen (DH), and extremely negative redox potential (RP) values. Strongly electrolyzed-reduced water, as well as ascorbic acid, (+)-catechin and tannic acid, completely scavenged O.-2 produced by the hypoxanthine-xanthine oxidase (HX-XOD) system in sodium phosphate buffer (pH 7.0). The superoxide dismutase (SOD)-like activity of reduced water is stable at 4 degrees C for over a month and was not lost even after neutralization, repeated freezing and melting, deflation with sonication, vigorous mixing, boiling, repeated filtration, or closed autoclaving, but was lost by opened autoclaving or by closed autoclaving in the presence of tungsten trioxide which efficiently adsorbs active atomic hydrogen. Water bubbled with hydrogen gas exhibited low DO, extremely high DH and extremely low RP values, as does reduced water, but it has no SOD-like activity. These results suggest that the SOD-like activity of reduced water is not due to the dissolved molecular hydrogen but due to the dissolved atomic hydrogen (active hydrogen). Although SOD accumulated H2O2 when added to the HX-XOD system, reduced water decreased the amount of H2O2 produced by XOD. Reduced water, as well as catalase and ascorbic acid, could directly scavenge H2O2. Reduce water suppresses single-strand breakage of DNA b active oxygen species produced by the Cu(II)-catalyzed oxidation of ascorbic acid in a dose-dependent manner, suggesting that reduced water can scavenge not only O2.- and H2O2, but also 1O2 and .OH.
 
5. Cancer. Inhibitory effect of electrolyzed reduced water on tumor angiogenesis.
  • 1Graduate School of Systems Life Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8581, Japan.
Abstract
Vascular endothelial growth factor (VEGF) is a key mediator of tumor angiogenesis. Tumor cells are exposed to higher oxidative stress compared to normal cells. Numerous reports have demonstrated that the intracellular redox (oxidation/reduction) state is closely associated with the pattern of VEGF expression. Electrolyzed reduced water (ERW) produced near the cathode during the electrolysis of water scavenged intracellular H(2)O(2) and decreased the release of H(2)O(2) from a human lung adenocarcinoma cell line, A549, and down-regulated both VEGF transcription and protein secretion in a time-dependent manner. To investigate the signal transduction pathway involved in regulating VEGF expression, mitogen-activated kinase (MAPK) specific inhibitors, SB203580 (p38 MAPK inhibitor), PD98059 (ERK1/2 inhibitor) and JNKi (c-Jun N-terminal protein kinase inhibitor) were applied. The results showed that only PD98059 blocks VEGF expression, suggesting an important role for ERK1/2 in regulating VEGF expression in A549 cells. As well, ERW inhibited the activation of extracellular signal-regulated kinase (ERK) in a time-dependent manner. Co-culture experiments to analyze in vitro tubule formation assay revealed that A549 cell-derived conditioned medium significantly stimulated the formation of vascular tubules in all analyzed parameters; tubule total area, tubule junction, number of tubules, and total tubule length. ERW counteracted the effect of A549 cell-conditioned medium and decreased total tube length (p<0.01). The present study demonstrated that ERW down-regulated VEGF gene transcription and protein secretion through inactivation of ERK.
 
6. Preservative effect of electrolyzed reduced water on pancreatic beta-cell mass in diabetic db/db mice.
  • 1Department of Obesity Management, Graduate School of Obesity Science, Dongduk Women's University, Seoul, South Korea. [email protected]
Abstract
Oxidative stress is produced under diabetic conditions and involved in progression of pancreatic beta-cell dysfunction. Both an increase in reactive oxygen free radical species (ROS) and a decrease in the antioxidant defense mechanism lead to the increase in oxidative stress in diabetes. Electrolyzed reduced water (ERW) with ROS scavenging ability may have a potential effect on diabetic animals, a model for high oxidative stress. Therefore, the present study examined the possible anti-diabetic effect of ERW in genetically diabetic mouse strain C57BL/6J-db/db (db/db). ERW with ROS scavenging ability reduced the blood glucose concentration, increased blood insulin level, improved glucose tolerance and preserved beta-cell mass in db/db mice. The present data suggest that ERW may protects beta-cell damage and would be useful for antidiabetic agent.
 
7. Dialysis. Ionized alkaline water: new strategy for management of metabolic acidosis in experimental animals.
  • 1Department of Urology, El Mansoura Urology and Nephrology Center, Mansoura University, 72 Gomhoria Street, Mansoura, Egypt.
Abstract
Metabolic acidosis can occur as a result of either the accumulation of endogenous acids or loss of bicarbonate from the gastrointestinal tract or the kidney, which represent common causes of metabolic acidosis. The appropriate treatment of acute metabolic acidosis has been very controversial. Ionized alkaline water was not evaluated in such groups of patients in spite of its safety and reported benefits. So, we aimed to assess its efficacy in the management of metabolic acidosis in animal models. Two models of metabolic acidosis were created in dogs and rats. The first model of renal failure was induced by ligation of both ureters; and the second model was induced by urinary diversion to gut (gastrointestinal bicarbonate loss model). Both models were subjected to ionized alkaline water (orally and by hemodialysis). Dogs with renal failure were assigned to two groups according to the type of dialysate utilized during hemodialysis sessions, the first was utilizing alkaline water and the second was utilizing conventional water. Another two groups of animals with urinary diversion were arranged to receive oral alkaline water and tap water. In renal failure animal models, acid-base parameters improved significantly after hemodialysis with ionized alkaline water compared with the conventional water treated with reverse osmosis (RO). Similar results were observed in urinary diversion models as there was significant improvement of both the partial pressure of carbon dioxide and serum bicarbonate (P = 0.007 and 0.001 respectively) after utilizing alkaline water orally. Alkaline ionized water can be considered as a major safe strategy in the management of metabolic acidosis secondary to renal failure or dialysis or urinary diversion. Human studies are indicated in the near future to confirm this issue in humans.
 
8. Electrolyzed-reduced water reduced hemodialysis-induced erythrocyte impairment in end-stage renal disease patients.
  • 1Department of Family Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan.
Abstract
Chronic hemodialysis (HD) patients increase erythrocyte susceptibility to hemolysis and impair cell survival. We explored whether electrolyte-reduced water (ERW) could palliate HD-evoked erythrocyte impairment and anemia. Forty-three patients undergoing chronic HD were enrolled and received ERW administration for 6 month. We evaluated oxidative stress in blood and plasma, erythrocyte methemoglobin (metHb)/ferricyanide reductase activity, plasma metHb, and proinflammatory cytokines in the chronic HD patients without treatment (n=15) or with vitamin C (VC)- (n=15), vitamin E (VE)-coated dialyzer (n=15), or ERW treatment (n=15) during an HD course. The patients showed marked increases (15-fold) in blood reactive oxygen species, mostly H(2)O(2), after HD without any treatment. HD resulted in decreased plasma VC, total antioxidant status, and erythrocyte metHb/ferricyanide reductase activity and increased erythrocyte levels of phosphatidylcholine hydroperoxide (PCOOH) and plasma metHb. Antioxidants treatment significantly palliated single HD course-induced oxidative stress, plasma and RBC PCOOH, and plasma metHb levels, and preserved erythrocyte metHb /ferricyanide reductase activity in an order VC>ERW>VE-coated dialyzer. However, ERW had no side effects of oxalate accumulation easily induced by VC. Six-month ERW treatment increased hematocrit and attenuated proinflammatory cytokines profile in the HD patients. In conclusion, ERW treatment administration is effective in palliating HD-evoked oxidative stress, as indicated by lipid peroxidation, hemolysis, and overexpression of proinflammatory cytokines in HD patients.
 
9. Selective stimulation of the growth of anaerobic microflora in the human intestinal tract by electrolyzed reducing water.
  • 1Department of Physiology of Microorganisms, Biology Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia. [email protected]
Abstract
96-99% of the "friendly" or residential microflora of intestinal tract of humans consists of strict anaerobes and only 1-4% of aerobes. Many diseases of the intestine are due to a disturbance in the balance of the microorganisms inhabiting the gut. The treatment of such diseases involves the restoration of the quantity and/or balance of residential microflora in the intestinal tract. It is known that aerobes and anaerobes grow at different oxidation-reduction potentials (ORP). The former require positive E(h) values up to +400 mV. Anaerobes do not grow unless the E(h) value is negative between -300 and -400 mV. In this work, it is suggested that prerequisite for the recovery and maintenance of obligatory anaerobic microflora in the intestinal tract is a negative ORP value of the intestinal milieu . Electrolyzed reducing water with E(h) values between 0 and -300 mV produced in electrolysis devices possesses this property. Drinking such water favours the growth of residential microflora in the gut. A sufficient array of data confirms this idea. However, most researchers explain the mechanism of its action by an antioxidant properties destined to detox the oxidants in the gut and other host tissues. Evidence is presented in favour of the hypothesis that the primary target for electrolyzed reducing water is the residential microflora in the gut.
 
10. Anti-diabetic effects of electrolyzed reduced water in streptozotocin-induced and genetic diabetic mice.
Kim MJ 1 , Kim HK.
  • 1Department of Obesity management, Graduate School of Obesity Science, Dongduk Women's University, 23-1 Wolkgukdong, Seoul, 136-714, South Korea. [email protected]
Abstract
Oxidative stress is produced under diabetic conditions and is likely involved in progression of pancreatic beta-cell dysfunction found in diabetes. Both an increase in reactive oxygen free radical species (ROS) and a decrease in the antioxidant defense mechanism lead to the increase in oxidative stress in diabetes. Electrolyzed reduced water (ERW) with ROS scavenging ability may have a potential effect on diabetic animals, a model for high oxidative stress. Therefore, the present study examined the possible anti-diabetic effect of ERW in two different diabetic animal models. The genetically diabetic mouse strain C57BL/6J-db/db (db/db) and streptozotocin (STZ)-induced diabetic mouse were used as insulin deficient type 1 and insulin resistant type 2 animal model, respectively. ERW, provided as a drinking water, significantly reduced the blood glucose concentration and improved glucose tolerance in both animal models. However, ERW fail to affect blood insulin levels in STZ-diabetic mice whereas blood insulin level was markedly increased in genetically diabetic db/db mice. This improved blood glucose control could result from enhanced insulin sensitivity, as well as increased insulin release. The present data suggest that ERW may function as an orally effective anti-diabetic agent and merit further studies on its precise mechanism.
 
11. Reduced hemodialysis-induced oxidative stress in end-stage renal disease patients by electrolyzed reduced water.
  • 1Department of Family Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan.
Abstract BACKGROUND:
Increased oxidative stress in end-stage renal disease (ESRD) patients may oxidize macromolecules and consequently lead to cardiovascular events during chronic hemodialysis. Electrolyzed reduced water (ERW) with reactive oxygen species (ROS) scavenging ability may have a potential effect on reduction of hemodialysis-induced oxidative stress in ESRD patients.
METHODS:
We developed a chemiluminescence emission spectrum and high-performance liquid chromatography analysis to assess the effect of ERW replacement on plasma ROS (H2O2 and HOCl) scavenging activity and oxidized lipid or protein production in ESRD patients undergoing hemodialysis. Oxidized markers, dityrosine, methylguanidine, and phosphatidylcholine hydroperoxide, and inflammatory markers, interleukin 6 (IL-6), and C-reactive protein (CRP) were determined.
RESULTS:
Although hemodialysis efficiently removes dityrosine and creatinine, hemodialysis increased oxidative stress, including phosphatidylcholine hydroperoxide, and methylguanidine. Hemodialysis reduced the plasma ROS scavenging activity, as shown by the augmented reference H2O2 and HOCl counts (Rh2o2 and Rhocl, respectively) and decreased antioxidative activity (expressed as total antioxidant status in this study). ERW administration diminished hemodialysis-enhanced Rh2o2 and Rhocl, minimized oxidized and inflammatory markers (CRP and IL-6), and partly restored total antioxidant status during 1-month treatment.
CONCLUSION:
This study demonstrates that hemodialysis with ERW administration may efficiently increase the H2O2- and HOCl-dependent antioxidant defense and reduce H2O2- and HOCl-induced oxidative stress.
 
12. Hepatoprotective effect of electrolyzed reduced water against carbon tetrachloride-induced liver damage in mice.
  • 1Institute of Medicine, College of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 402, Taiwan.
Abstract
The study investigated the protective effect of electrolyzed reduced water (ERW) against carbon tetrachloride (CCl(4))-induced liver damage. Male ICR mice were randomly divided into control, CCl(4), CCl(4)+silymarin, and CCl(4)+ERW groups. CCl(4)-induced liver lesions include leukocytes infiltration, hepatocyte necrosis, ballooning degeneration, mitosis, calcification, fibrosis and an increase of serum alanine aminotransferase (ALT), and aminotransferase (AST) activity. In addition, CCl(4) also significantly decreased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). By contrast, ERW or silymarin supplement significantly ameliorated the CCl(4)-induced liver lesions, lowered the serum levels of hepatic enzyme markers (ALT and AST) and increased the activities of SOD, catalase, and GSH-Px in liver. Therefore, the results of this study show that ERW can be proposed to protect the liver against CCl(4)-induced oxidative damage in mice, and the hepatoprotective effect might be correlated with its antioxidant and free radical scavenging effect .
 
13. Strong acid water. Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on plastic kitchen cutting boards by electrolyzed oxidizing water.
  • 1Department of Animal Science, University of Connecticut, Storrs 06269, USA.
Abstract
One milliliter of culture containing a five-strain mixture of Escherichia coli O157:H7 (approximately 10(10) CFU) was inoculated on a 100-cm2 area marked on unscarred cutting boards. Following inoculation, the boards were air-dried under a laminar flow hood for 1 h, immersed in 2 liters of electrolyzed oxidizing water or sterile deionized water at 23 degrees C or 35 degrees C for 10 or 20 min; 45 degrees C for 5 or 10 min; or 55 degrees C for 5 min. After each temperature-time combination, the surviving population of the pathogen on cutting boards and in soaking water was determined. Soaking of inoculated cutting boards in electrolyzed oxidizing water reduced E. coli O157:H7 populations by > or = 5.0 log CFU/100 cm2 on cutting boards. However, immersion of cutting boards in deionized water decreased the pathogen count only by 1.0 to 1.5 log CFU/100 cm2. Treatment of cutting boards inoculated with Listeria monocytogenes in electrolyzed oxidizing water at selected temperature-time combinations (23 degrees C for 20 min, 35 degrees C for 10 min, and 45 degrees C for 10 min) substantially reduced the populations of L. monocytogenes in comparison to the counts recovered from the boards immersed in deionized water. E. coli O157:H7 and L. monocytogenes were not detected in electrolyzed oxidizing water after soaking treatment, whereas the pathogens survived in the deionized water used for soaking the cutting boards. This study revealed that immersion of kitchen cutting boards in electrolyzed oxidizing water could be used as an effective method for inactivating foodborne pathogens on smooth, plastic cutting boards.
 
14. The bactericidal effects of electrolyzed oxidizing water on bacterial strains involved in hospital infections.
  • 1Department of Physiology of Microorganisms, Biology Faculty, Moscow State University, Lenin Hills 1/12, Moscow 119992, Russia. [email protected]
Abstract
The study is designed to investigate bactericidal actions of electrolyzed oxidizing water on hospital infections. Ten of the most common opportunistic pathogens are used for this study. Cultures are inoculated in 4.5 mL of electrolyzed oxidizing (EO) water or 4.5 mL of sterile deionized water (control), and incubated for 0, 0.5, and 5 min at room temperature. At the exposure time of 30 s the EO water completely inactivates all of the bacterial strains, with the exception of vegetative cells and spores of bacilli which need 5 min to be killed. The results indicate that electrolyzed oxidizing water may be a useful disinfectant for hospital infections, but its clinical application has still to be evaluated.
 
15. Treatment of Escherichia coli O157:H7 inoculated alfalfa seeds and sprouts with electrolyzed oxidizing water.
  • 1Department of Agricultural and Biological Engineering, Pennsylvania State University, University Park, PA 16802, USA.
Abstract
Electrolyzed oxidizing water is a relatively new concept that has been utilized in agriculture, livestock management, medical sterilization, and food sanitation. Electrolyzed oxidizing (EO) water generated by passing sodium chloride solution through an EO water generator was used to treat alfalfa seeds and sprouts inoculated with a five-strain cocktail of nalidixic acid resistant Escherichia coli O157:H7. EO water had a pH of 2.6, an oxidation-reduction potential of 1150 mV and about 50 ppm free chlorine. The percentage reduction in bacterial load was determined for reaction times of 2, 4, 8, 16, 32, and 64 min. Mechanical agitation was done while treating the seeds at different time intervals to increase the effectiveness of the treatment. Since E. coli O157:H7 was released due to soaking during treatment, the initial counts on seeds and sprouts were determined by soaking the contaminated seeds/sprouts in 0.1% peptone water for a period equivalent to treatment time. The samples were then pummeled in 0.1% peptone water and spread plated on tryptic soy agar with 5 microg/ml of nalidixic acid (TSAN). Results showed that there were reductions between 38.2% and 97.1% (0.22-1.56 log(10) CFU/g) in the bacterial load of treated seeds. The reductions for sprouts were between 91.1% and 99.8% (1.05-2.72 log(10) CFU/g). An increase in treatment time increased the percentage reduction of E. coli O157:H7. However, germination of the treated seeds reduced from 92% to 49% as amperage to make EO water and soaking time increased. EO water did not cause any visible damage to the sprouts.
 
16. Effect of alkaline ionized water on reproduction in gestational and lactational rats.
  • 1Department of Veterinary Physiological Chemistry, College of Agriculture and Veterinary Medicine, Nihon University, Kanagawa, Japan.
Abstract
Alkaline ionized water (AKW) produced by electrolysis was given to gestational and lactational rats, and its effect on dams, growth of fetuses and offsprings were investigated. The results showed that the intake of food and water in dams increased significantly when AKW was given from the latter half of the gestation period and from the former half of the lactation period. Body weight of the offsprings in the test group, both males and females, increased significantly from the latter half of the lactation period. During the lactation period and after weaning, the offsprings in the test group showed significantly hastened appearance of abdominal hair, eruption of upper incisors, opening of eyelids and other postnatal morphological developments both in males and females, as well as earlier separation of auricle and descent of testes in males compared with the control was noted. As mentioned above, it was suggested from the observations conducted that the AKW has substantial biological effects on postnatal growth, since intake of food and water and body weight of the offsprings increased and postnatal morphological development was also accelerated.
 
17. The mechanism of the enhancedantioxidant effectsagainst superoxide anion radicals of reduced water produced by electrolysis.
  • 1Bio-REDOX Laboratory Inc. 1187-4, Oaza-Ueda, Ueda-shi, Nagano-ken 386-0001, Japan. [email protected]
Abstract
We reported that reduced water produced by electrolysis enhanced the antioxidant effects of proton donors such as ascorbic acid (AsA) in a previous paper. We also demonstrated that reduced water produced by electrolysis of 2 mM NaCl solutions did not show antioxidant effects by itself. We reasoned that the enhancement of antioxidant effects may be due to the increase of the ionic product of water as solvent. The ionic product of water (pKw) was estimated by measurements of pH and by a neutralization titration method. As an indicator of oxidative damage, Reactive Oxygen Species- (ROS) mediated DNA strand breaks were measured by the conversion of supercoiled phiX-174 RF I double-strand DNA to open and linear forms. Reduced water had a tendency to suppress single-strand breakage of DNA induced by reactive oxygen species produced by H2O2/Cu (II) and HQ/Cu (II) systems. The enhancement of superoxide anion radical dismutation activity can be explained by changes in the ionic product of water in the reduced water.

Please contact me anytime as needed.
In Good Health!
Aaron Dodson, P.E.
714-322-2297 mobile/text
  
STAY CONNECTED: